5 research outputs found

    Influence of insulating materials on green building rating system results

    Get PDF
    This paper analyzes the impact of a change in the thermal insulating material on both the energy and environmental performance of a building, evaluated through two different green building assessment methods: Leadership in Energy and Environmental Design (LEED) and Istituto per l'innovazione e Trasparenza degli Appalti e la CompatibilitĂ  Ambientale (ITACA). LEED is one of the most qualified rating systems at an international level; it assesses building sustainability thanks to a point-based system where credits are divided into six different categories. One of these is fully related to building materials. The ITACA procedure derives from the international evaluation system Sustainable Building Tool (SBTool), modified according to the Italian context. In the region of Umbria, ITACA certification is composed of 20 technical sheets, which are classified into five macro-areas. The analysis was developed on a residential building located in the central Italy. It was built taking into account the principles of sustainability as far as both structural and technical solutions are concerned. In order to evaluate the influence of thermal insulating material, different configurations of the envelope were considered, replacing the original material (glass wool) with a synthetic one (expanded polystyrene, EPS) and two natural materials (wood fiber and kenaf). The study aims to highlight how the materials characteristics can affect building energy and environmental performance and to point out the different approaches of the analyzed protocols

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Multipurpose experimental characterization of smart nanocomposite cement-based materials for thermal-energy efficiency and strain-sensing capability”

    No full text
    Novel nanocomposite smart multifunctional materials are emerging as promising technological advances in construction industry, where thermal-energy efficiency needs should meet environmental sustainability and mechanical performance requirements. In this view, new cement-based materials showed encouraging results in terms of added functional properties combining all the above mentioned capabilities with electrical conductivity and self-sensing potential for a variety of field scopes, e.g. vibration measurements, damage detection, structural health monitoring, electromagnetic shielding, self-heating pavements for deicing and more. The present paper deals with the development and multipurpose experimental characterization of cement-based materials doped with different carbon nanoinclusions consisting of: multi-walled carbon nanotubes, carbon nanofibers, carbon black, and graphene nanoplatelets. The study investigates morphology, optical features, thermal characteristics, electrical properties and strain-sensing capability of the different composites, through a campaign of in-lab experimental measurements. The results highlight the peculiar behavior of each composite material, which is strictly related to the adopted nanoinclusions, that reveal to be suitable for specific purposes. In particular, all carbon nanoinclusions are seen to reduce solar reflectance capability, while they produce negligible variations in thermal emittance. Graphene nanoplatelets represent the most effective nanoinclusion to increase thermal conductivity and diffusivity, which is related to their structural and geometrical characteristics and better capability to distribute the thermal wave. Consistently, the same graphene samples produce the largest electrical conductivity and capacitance. However, multi-walled carbon nanotubes, even though providing comparatively smaller contributions to electrical conductivity, are seen to be the best nanoinclusions for providing strain-sensing capabilities to the cement-based composite
    corecore